Magnetically Actuated Seal, Phase II

Completed Technology Project (2011 - 2013)

Project Introduction

FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket engines for a variety of purposes. The most common applications are in the lift-off seal (LOS), inter-propellant seal (IPS), and balance piston seals ⇒ high-pressure orifice (HPO), low-pressure orifice (LPO), and inner diameter impeller shroud seal (eye seal). The system solution for conventional seals represents a compromise between the turbopump mechanical design, primarily flowpath, and secondary flowpath design that results in increased leakage, increased seal wear, and reduced balance piston load capacity that reduces performance, throttle-ability, thrust-to-weight, reliability, and operability. The magnetically actuated seal eliminates this compromise and provides significant improvement in performance, throttle-ability, thrust-toweight, reliability, and operability. Phase 1 resulted in a significant advancement of the technology by demonstrating a magnetically actuated face seal in both ambient and cryogenic conditions, characterizing the seal and actuator performance, and quantifying the performance improvements for the turbopump and engine. Phase 2 will advance the technology from TRL 3 to 5. The technology is applicable to booster engines, in-space engines, and ascent/descent engines.

Primary U.S. Work Locations and Key Partners

Magnetically Actuated Seal, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Magnetically Actuated Seal, Phase II

Completed Technology Project (2011 - 2013)

Organizations Performing Work	Role	Туре	Location
Florida Turbine	Lead	Industry	Jupiter,
Technologies, Inc.	Organization		Florida
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	Florida

Project Transitions

0

June 2011: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139073)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Florida Turbine Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Alex Pinera

Co-Investigator:

Alex Pinera

Small Business Innovation Research/Small Business Tech Transfer

Magnetically Actuated Seal, Phase II

Technology Areas

Primary:

Technologies

Propulsion

☐ TX01.1.1 Integrated
Systems and Ancillary

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

